AP Calculus Summer Packet

Simplify using only positive exponents.

1. -5^{-x}
2. $\frac{\frac{1}{2}(2 x+5)^{-3 / 2}}{\frac{3}{2}}$
3. $2\left(\frac{2}{2-x}\right)\left(\frac{-2}{(2-x)^{2}}\right)$
4. $\left(16 x^{2} y\right)^{3 / 4}$
5. $-\left(\frac{x^{1 / 2}}{2}\right) \sin \sqrt{x}$
6. $\frac{\sqrt{4 x-16}}{\sqrt[4]{(x-4)^{3}}}$

Find the domain of the following functions. Make sure to use interval notation.
7. $y=\frac{x^{2}-4}{2 x+4}$
8. $y=\frac{x^{2}+8 x+12}{\sqrt[4]{x+5}}$

Factor completely.
9. $x^{5}+11 x^{3}-80 x$
10. $2 x^{2}+50 y^{2}-20 x y$
11. $(x-3)^{2}(2 x+1)^{3}+(x-3)^{3}(2 x+1)^{2}$

Describe, in words, the transformations that would take place to $\mathrm{f}(\mathrm{x})$ in each of the follow.
12. $f(x)-3$
13. $f(x-3)$
14. $-f(x+5)$
15. $6 f(x)+3$
16. $f(2 x)$

Solve each equation by factoring or using the quadratic formula.
17. $7 x^{2}-3 x=0$
18. $4 x(x-2)-5 x(x-1)=2$
19. $x^{2}+6 x+4=0$
20. $2 x^{2}-(x+2)(x-3)=12$
21. $x+\frac{1}{x}=\frac{13}{6}$
22. $x-10 \sqrt{x}=-9$

Find the equations of all vertical ($\mathrm{x}=$?) and horizontal ($\mathrm{y}=$?) asymptotes (if they exist).
23. $y=\frac{x}{x+4}$
24. $y=\frac{x^{3}+5}{x^{2}-1}$
25. $y=\frac{x+4}{x^{2}+9}$

Simplify the following.
26. $\frac{x}{x-\frac{1}{2}}$
27. $\frac{x-\frac{1}{x}}{x+\frac{1}{x}}$
28. $\frac{x^{-3}-x}{x^{-2}-1}$

If $f(x)=x^{2}, g(x)=2 x-1, h(x)=2^{x}$, find the following.
29. $\mathrm{f}(\mathrm{g}(2))$
30. $g(f(2))$
31. $g(f(h(1 / 2)$

Solve for x .
32. $\frac{2}{3}-\frac{5}{6}=\frac{1}{x}$
33. $x+\frac{6}{x}=5$
34. $\frac{x-5}{x+1}=\frac{3}{5}$

Solve for x on the interval $[0,2 \pi)$.
35. $\sin x=\frac{1}{2}$
36. $2 \sin x \cos x+\sin x=0$
37. $\sin ^{2} x+4+\cos ^{2} x=x$

Answer the following questions over a variety of topics.
38. Let f be a linear function where $f(2)=-5$ and $f(-3)=1$. Find $f(x)$ and write in point-slope form.
39. Find an equation for the line, in point-slope form, that contains $(5,1)$ and is perpendicular to $6 x-3 y=2$.
40. Use the table to calculate the average rate of change from $t=1$ to $t=3$.

t	0	1	2	3
$\mathrm{x}(\mathrm{t})$	8	7	5	1

41. Order the points A, B, and C, from least to greatest, by their rates of change.
42. Find the points of intersection in the graphs of $y=x-1$ and $y^{2}=2 x+6$.

43. Rewrite as a single logarithmic expression: $\frac{1}{2} \ln (x-3)+\ln (x+2)-6 \ln x$.

Evaluate the following:
44. $\sin \left(\frac{7 \pi}{6}\right)$
45. $\sec \left(-\frac{2 \pi}{3}\right)$
46. $\tan \left(\frac{\pi}{2}\right)$
47. Sketch a graph of the piecewise function $f(x)= \begin{cases}x^{2}-5, & x<-1 \\ 0, & x=-1 \\ 6-4 x, & x>-1\end{cases}$

Use the graph of $f(x)$ to the right to find the following.
48. $f(2)=$
49. $f(x)=2$
$\mathrm{x}=$
50. $f(x)=1$
$x=$

Solve the following inverse trig functions.
51. $\operatorname{Tan}(\pi / 4)=1$

Therefore, $\tan ^{-1}(1)=$ \qquad \& $\arctan (1)=$ \qquad
52. $\sin ^{-1}(1 / 2)=$ \qquad $\& \arcsin (1 / 2)=$ \qquad

Know all of the following graphs of basic parent functions:

PARENT FUNCTIONS

$$
f(x)=a
$$

Constant

$f(x)=x^{2}$
Quadratic

$f(x)=a^{x}$
Exponential

$f(x)=x$
Linear

$f(x)=x^{3}$ Cubic

$f(x)=\ln x$

Logarithmic

$f(x)=|x|$
Absolute Value

$f(x)=\sqrt{x}$
Square Root

$f(x)=\frac{1}{x}$

Reciprocal

$f(x)=\sin x$

$f(x)=\cos x$

Trigonometric Functions

